
32078B–AVR32–05/08

AVR32 UC3

Microcontrollers

Application Note
AVR32119: Getting Started with
AVR32 UC3A Microcontrollers

1. Introduction
This application note is aimed at helping the reader become familiar with the Atmel

AVR32® UC3A microcontroller.

It describes in detail a simple project that uses several important features present on

UC3A devices. This includes how to setup the microcontroller prior to executing the

application, as well as how to add the functionalities themselves. After going through

this guide, the reader should be able to successfully start a new project from scratch.

This document also explains how to setup and use a GNU AVR32 toolchain in order

to compile and run a software project.

For more information about the AVR32 architecture, please refer to the appropriate

documents available from http://www.atmel.com/avr32.

2. Requirements
The software provided with this application note requires several components:

• AVR32Studio Development Tools: AVR32 Studio is a free Integrated

Development Environment (IDE) for AVR32 that enables you to write, build, deploy

and debug your C/C++ and assembler code. AVR32 Studio integrates with the

AVR32 GNU Toolchain including GCC for building applications for AVR32.

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116

• GNU Toolchain: AVR32 GNU Toolchain is a set of standalone command line

programs used to create applications for AVR32 microcontrollers (compiler,

assembler, linker).

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

• EVK1100: The EVK1100 is an evaluation kit and development system for the

AVR32 AT32UC3A microcontroller.

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4114

• AT32UC3A0512 Datasheet:

http://www.atmel.com/dyn/products/product_card.asp?part_id=4117

• AVR32 UC3 Software Framework: This framework provides software drivers,

libraries and application examples to build any application for AVR32 UC3.

devices.http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

• AVR32 Architecture Manual:

http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf

• AVR32 Introduction to Header Files Application Note: introduction to header

files, I/O register, bit-names and module type definitions

http://www.atmel.com/dyn/resources/prod_documents/doc32005.pdf

http://www.atmel.com/avr32

3. Getting Started with a Software Example
This section describes how to program a basic application that helps you to become familiar with

UC3A microcontrollers. It is divided into two main sections: the first one covers the specification

of the example (what it does, which peripherals are used); the second one details the implemen-

tation aspect.

3.1 Specification

3.1.1 Features

The demonstration program makes two LEDs on the board blink at a fixed rate. This rate is gen-

erated by using a timer for the first LED; the second one uses a Wait function based on a 1 ms

tick. The blinking can be stopped using one button.

While this software may look simple, it uses several peripherals which make up the basis of an

operating system. As such, it makes a good starting point for someone wanting to become famil-

iar with the UC3A microcontroller series.

3.1.2 Peripherals

In order to perform the operations described in the previous section, the software example uses

the following set of peripherals:

• General Purpose Input/Output (GPIO) controller

• Timer Counter (TC)

• Interrupt Controller (INTC)

LEDs and buttons on the board are connected to standard input/output pins of the chip; those

are managed by a GPIO controller. In addition, it is possible to have the controller generating an

interrupt when the status of one of its pin changes; buttons are configured to have this behavior.

The TC is used to generate a time base, in order to obtain the LED blinking rate. It is used in

interrupt mode: the TC triggers an interrupt every millisecond, incrementing a variable by one

tick; the main function monitors this variable to provide an accurate delay for toggling the second

LED state.

Using the INTC is required to manage interrupts. It allows the configuration of a separate vector

for each source; two different functions are used to handle GPIO and TC interrupts.

3.1.3 Evaluation Kit

3.1.3.1 Booting

The AT32UC3A0512 found on EVK1100 evaluation boards features two internal memories: a

512 KB Flash and a 64KB SRAM. The Getting Started example software is to be compiled and

loaded in flash.

3.1.3.2 Buttons

The EVK1100 Evaluation Kit features 3 push buttons, connected to pins PX16 (GPIO88), PX19

(GPIO85), PX22 (GPIO82). When pressed, they force a logical low level on the corresponding

GPIO line.

The Getting Started example uses the push button 0 (GPIO88 - PX16).
2

32078B–AVR32–05/08

AVR32119

3.1.3.3 LEDs

There are four general-purpose green LEDs on the EVK1100; they are wired to pins PB27,

PB28, PB29 and PB30. Setting a logical low level on one of these GPIO lines turns the corre-

sponding LED on. There are also two bi-colors LEDs, one connected on PB19 (GPIO51), PB20

(GPIO52), the other connected to PB21 (GPIO53), PB22 (GPIO54).

The example application uses the two bi-color LEDs: PB19 (GPIO51)and PB22 (GPIO54).

3.2 Implementation

As stated previously, the example defined above requires the use of several peripherals. It must

also provide the necessary code for starting up the microcontroller. Both aspects are described

in detail in this section, with commented source code when appropriate.

3.2.1 C-Startup

Most of the code of an embedded application is written in C. This makes the program easier to

understand, more portable and modular. However, using the C language requires the initializa-

tion of several components. These initialization procedures must be performed using assembly

language, and are grouped into a file referred to as C-startup. The C-startup code must:

• Initialize the exception vector base address and the exception vectors

• Initialize critical peripherals

• Initialize stacks

• Initialize memory segments

These steps are described in the following paragraphs.

The C-startup code will be used from the Newlib C-library. Newlib is a C standard library imple-

mentation intended for use on embedded systems. It is a conglomeration of several library parts,

all under free software licenses that make them easily usable on embedded products.

The Newlib is bundled with the AVR32 GNU toolchain.

3.2.1.1 Exception

All exceptions routines starts at the address EVBA (Exception Vector Base Address). EVBA is a

register that contains a pointer to the exceptions routines table.

If the program does not need to handle an exception, then the corresponding instruction can

simply be set to an infinite loop, i.e. a branch to the same address. For vectors which are to be

handled, a branch instruction to a function must be provided.

In this example, the only relevant vector is the one for interrupts. It must simply branch to the

interrupt handler, which is described in Section 3.2.1.2 on page 3.

Note: Refer also to the AVR32 Architecture Manual, section Event Processing.

3.2.1.2 Exception: Interrupt Handler

The main purpose of the interrupt handler is to fetch the correct jump address for the pending

interrupt. This information is held in the Interrupt Vector Register (IPRn) of the INTC (see Sec-

tion 3.2.5 on page 5 for more information about the INTC). Once the address is loaded, the

handler just branches to it.
3

32078B–AVR32–05/08

AVR32119

3.2.2 Low-Level Initialization: Flash Controller (FLASHC)

Whenever the microcontroller core runs too fast for the internal Flash, it uses one wait state, i.e.

cycles during which it does nothing but wait for the memory. The number of wait states can be

configured in the FLASHC.

After reset, the chip uses its internal slow clock (cadenced at 115 kHz), so there is no need for

any wait state. However, before switching to the main oscillator or to the PLL, the correct num-

ber of wait states must be set if the frequency is above 33MHz on UC3A devices. If not, the core

may no longer be able to read the code from the Flash and code execution may be

unpredictable.

Configuring the number of wait states is done in the Flash Control Register (FCR) of the

FLASHC. For example, a 48 MHz operation requires the use of one wait state:

AVR32_FLASHC.fcr |= 1<<AVR32_FLASHC_FCR_FWS_OFFSET;

Note: Refer to the AVR32 Introduction to Header Files Application Note for more details about the I/O
register, bit-names and module type definitions.

For more information about the required number of wait states depending on the operating fre-

quency of a microcontroller, please refer to the AC Electrical Characteristics section of the

corresponding datasheet.

In this example, the device will run at 12MHz so the flash controller does not require to use the

wait state feature.

3.2.3 Low-Level Initialization: Main Oscillator

After reset, the chip runs using a slow clock (internal RC oscillator), which is cadenced at 115.2

kHz. The main oscillator must be configured in order to run at 12MHz. It can be configured in the

Power Manager controller (PM).

The first step is to enable the main oscillator and wait for it to stabilize. The following piece of

code performs these two operations:

• To configure the oscillator 0 in crystal mode:

AVR32_PM.oscctrl0=AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G3<<AVR32_PM_OSCCTRL0_MODE

_OFFSET | 3<<AVR32_PM_OSCCTRL0_STARTUP_OFFSET;

• Then enable the oscillator 0:

 AVR32_PM.mcctrl |= AVR32_PM_MCCTRL_OSC0EN_MASK;

• Wait for oscillator 0 to be ready:

 while (!(AVR32_PM.poscsr & AVR32_PM_POSCSR_OSC0RDY_MASK));

• Switch main clock from internal RC oscillator to oscillator 0. On the EVK1100, a 12MHz

crystal is connected to OSC0:

AVR32_PM.mcctrl |= AVR32_PM_MCCTRL_MCSEL_OSC0;

At this point, the chip is configured to run on the main clock with the oscillator, at the desired fre-

quency 12MHz.

Note: For more details refer to the UC3A0512 datasheet, section Power Manager.

3.2.3.1 Low-Level Initialization: Interrupt Controller

How to set up the INTC properly is described in Section 3.2.5 on page 5.
4

32078B–AVR32–05/08

AVR32119

3.2.4 Generic Peripheral Usage

3.2.4.1 Initialization

Most peripherals are initialized by performing three actions

• Enabling the peripheral clock in the PM: this is already the default PM configuration.

• Enabling the control of the peripheral on GPIO pins

• Configuring the interrupt handler of the peripheral in the INTC if required

• Enabling the interrupt source at the peripheral level

Finally, if an interrupt is to be generated by the peripheral, then the source must be configured

properly in the Interrupt Controller. Please refer to Section 3.2.5 on page 5 for more information.

3.2.5 Using the Interrupt Controller (INTC)

3.2.5.1 Purpose

The INTC manages all internal and external interrupts of the system. It enables the definition of

one handler for each interrupt source, i.e., a function which is called whenever the correspond-

ing event occurs. Interrupts can also be individually enabled or masked, and have several

different priority levels.

3.2.5.2 Initialization

The only mandatory action to perform. This is done using the INTC library (int.c, intc.h files) with

the instructions:

• Setup the interrupt vectors

INTC_init_interrupts();

• Register the interrupt handlers for TimerCounter (AVR32_TC_IRQ0 is the IRQ of the interrupt

handler to register, INT0 is the interrupt priority level to assign to the group of this IRQ) and

GPIO (In every port there are four interrupt lines connected to the interrupt controller. Every

eight interrupts in the port are stored together to form an interrupt line. That is why we use the

formula "AVR32_GPIO_IRQ_0 + (88/8)" to register the GPIO88; AVR32_GPIO_IRQ_0 is

used as the base interrupt line and we add '(88/8)' to register the corresponding interrupt line.

INTC_register_interrupt(&tc_irq, AVR32_TC_IRQ0, INT0);

INTC_register_interrupt(&gpio_irq, (AVR32_GPIO_IRQ_0+88/8), INT1);

3.2.6 Using the Timer Counter

3.2.6.1 Purpose

Timer Counters on AVR32 devices can perform several functions, e.g., frequency measurement,

pulse generation, delay timing, Pulse Width Modulation (PWM), etc.

In this example, the primary goal of the Timer Counter (TC) is to generate periodic interrupts.

This is most often used to provide the base tick of an operating system. The TC uses PBA

divided by x as its input clock (x=2, 8, 32 or 128 on revision G and higher, x=4, 8, 1 6, 32 on revi-

sion E).

The getting started example uses the TC to provide a 1 ms time base. Each time the TC inter-

rupt is triggered, a 32-bit counter is incremented.
5

32078B–AVR32–05/08

AVR32119

3.2.6.2 Initialization

The first step is to configure the Channel Mode Register (CMR). TC channels can operate in two

different modes. The first one, which is referred to as the Capture mode, is normally used for

performing measurements on input signals. The second one, the Waveform mode, enables the

generation of pulses. In the example, the purpose of the TC is to generate an interrupt at a fixed

rate. Actually, such an operation is possible in both the Capture and Waveform mode. Since no

signal is being sampled or generated, there is no reason to choose one mode over the other.

However, setting the TC in Waveform mode and outputting the tick on TIOA or TIOB can be

helpful for debugging purpose.

Setting the CPCTRG bit of the CMR resets the timer and restarts its clock every time the counter

reaches the value programmed in the TC Register C. Generating a specific delay is thus done

by choosing the correct value for RC. It is also possible to choose between several different

input clocks for the channel, which in practice makes it possible to prescale MCK. Since the

timer resolution is 16 bits, using a high prescale factor may be necessary for bigger delays.

Consider the following example: the timer must generate a 1 ms trigger with a 12 MHz main

clock frequency. RC must be equal to the number of clock cycles generated during the delay.

The last initialization step is to configure the interrupt whenever the counter reaches the value

programmed in RC. At the TC level, is easily done by setting the CPCS bit of the Interrupt

Enable Register.

3.2.6.3 Interrupt Handler

The first action to do in the handler is to acknowledge the pending interrupt from the peripheral.

Otherwise, the latter continues to assert the IRQ line. In the case of a Timer Counter channel,

acknowledging is done by reading the corresponding Status Register (SR).

Special care must be taken to avoid having the compiler optimize away a dummy read to this

register. In C, this is done by declaring a volatile local variable and setting it to the register con-

tent. The volatile keyword tells the compiler to never optimize accesses (read/write) to a

variable.

The rest of the interrupt handler is straightforward. A global variable is incremented with the

number of ticks read.

__attribute__((__interrupt__)) static void tc_irq(void)

{

 // Increment the ms seconds counter

 tc_tick++;

// clear the interrupt flag of TC channel 0

 AVR32_TC.channel[0].sr;

// specify that an interrupt has been raised

 print_sec = 1;

}

3.2.7 Using the General Purpose Input/Output (GPIO) controller

3.2.7.1 Purpose

Most pins on AVR32 UC3 microcontrollers can either be used by a peripheral function (e.g.

USART, SPI, etc.) or used as generic input/outputs. All these pins are managed by the General

Purpose Input/Output (GPIO) controller.
6

32078B–AVR32–05/08

AVR32119

A GPIO controller enables the programmer to configure each pin as used by the associated

peripheral or as a generic IO. In the second case, the level of the pin can be read/written using

several registers of the GPIO controller. Each pin can also have an internal pull-up activated

individually.

In addition, the GPIO controller can detect a status change on one or more pins, optionally trig-

gering an interrupt whenever this event occurs.

In this example, the GPIO controller manages two LEDs and two buttons. The buttons are con-

figured to trigger an interrupt when pressed (as defined in Section 3.1.1 on page 2).

3.2.7.2 Configuring LEDs

The two GPIOs connected to the LEDs must be configured as outputs, in order to turn them on

or off. First, the GPIO control must be enabled in GPIO Enable Register (GPER) by writing the

value corresponding the two LED IDs.

GPIO output direction is controlled using the registers Output Driver Enable Register (ODER).

• Init GPIO51 (PB19)

 AVR32_GPIO.port[1].oders = 1 << (19 & 0x1F); // The GPIO output driver is

enabled for that pin.

 AVR32_GPIO.port[1].gpers = 1 << (19 & 0x1F); // The GPIO module controls

that pin.

• Init GPIO54 (PB22)

 AVR32_GPIO.port[1].oders = 1 << (22 & 0x1F); // The GPIO output driver is

enabled for that pin.

 AVR32_GPIO.port[1].gpers = 1 << (22 & 0x1F); // The GPIO module controls

that pin.

• Initialize GPIO88 (PX16) as interrupt (pin level change). GPIO88 bit control can be found in

gpio port 2 (88/32=>2), bit 24 (88%32=24). First enable the glitch filter on GPIO88.

 AVR32_GPIO.port[2].gfers = 1 << (24 & 0x1F);

• Configure the edge detector on pin change on GPIO88

 AVR32_GPIO.port[2].imr0c = 1 << (24 & 0x1F);

 AVR32_GPIO.port[2].imr1c = 1 << (24 & 0x1F);

• Enable interrupt on GPIO88

 AVR32_GPIO.port[2].iers = 1 << (24 & 0x1F);

3.2.7.3 Controlling LEDs

LEDs are turned on or off by changing the level on the GPIOs to which they are connected. After

those GPIOs have been configured, their output values can be changed by writing the pin IDs in

the Output Value Register Toggle (OVRT) of the GPIO controller.

• Toggle the GPIO51 (PB19);

AVR32_GPIO.port[1].ovrt = 1 << (19 & 0x1F);

3.2.7.4 Configuring Buttons

As stated previously, the GPIO connected to the push button on the board shall be input. Also, a

“state change” interrupt is configured. This triggers an interrupt when a button is pressed or

released.
7

32078B–AVR32–05/08

AVR32119

After the GPIO control has been enabled on the GPIOs (by writing GPER), it is configured as

inputs by writing its IDs in ODER.

Enabling interrupts on the pins is simply done in the Interrupt Enable Register (IER). However,

the GPIO controller interrupt must be configured as described in Section 3.2.6.3 on page 6.

3.2.7.5 Interrupt Handler

The interrupt handler for the GPIO controller detect a state change level on the pin. This corre-

sponds to either the press or the release action on the button.

Note that the interrupt must be acknowledged in the GPIO controller. This is done implicitly when

IFR is read by the software.

__attribute__((__interrupt__)) static void gpio_irq(void)

{

 // GPIO88 (PX16) is connected to push button 0.

 // GPIO88 bit control can be found in gpio port 2 (88/32=>2), bit 24

(88%32=24).

 AVR32_GPIO.port[2].ifrc = 1<<24;

 // Toggle the I/O line GPIO54 (PB22)

 // GPIO54 bit control can be found in gpio port 1 (54/32=>1), bit 22

(54%32=22).

 AVR32_GPIO.port[1].ovrt = 1 << (22 & 0x1F);

}

8

32078B–AVR32–05/08

AVR32119

4. Loading the Project
The development environment for this getting started is a PC running Microsoft Windows OS or

Linux.

The required software tools for building the project and loading the binary file is the AVR32 GNU

toolchain (available at www.atmel.com).

The connection between the PC and the board is achieved with a USB cable and a JTAGICE

mkII debugger.

4.1 Building the Project

The AVR32 GNU toolchain provides assembler, compiler, linker and flash programing tools.

Useful programs for debug are also included. AVR32Studio is a free Integrated Development

Environment (IDE) for AVR32 that enables you to write, build, deploy and debug your C/C++ and

assembler code.

4.1.1 AVR32Studio

Refer to the application note AVR32105: AVR32Studio Getting Started, and in particular the

section Creating a new AVR32 project, then Adding files to the project

4.1.2 Standalone Makefile

The Makefile contains rules indicating how to assemble, compile and link the project source files

to create a binary file ready to be downloaded on the target.

A config.mk file contains the variables settings, the other for rules implementation are contained

in the Makefile.

4.1.2.1 Variables

The config.mk file contains variables (uppercase), used to set up some environment parame-

ters, such as the compiler toolchain prefix and program names, and options to be used with the

compiler.

• GCC Architecture and parts: the AVR32 UC architecture and part number.

– ARCH = uc

– PART = uc3a0512

• Flash memories: [{cfi|internal}@address,size]...

– FLASH = internal@0x80000000,512Kb

• Clock source to use when programming: [{xtal|extclk|int}]

– PROG_CLOCK = xtal

• Target name: {*.a|*.elf}

– TARGET = $(PART)-getting_started.elf

• C and Assembler source files

– ./main.c

• Optimizations:

– OPTIMIZATION = -O0 -ffunction-sections -fdata-sections

• Extra flags to use when linking

– LD_EXTRA_FLAGS = -Wl,--gc-sections
9

32078B–AVR32–05/08

AVR32119

http://www.atmel.com

For more detailed information about gcc options, please refer to gcc documentation

(gcc.gnu.org).

4.1.2.2 Rules

The Makefile contains rules. Each rule is composed on the same line by a target name, and the

files needed to create this target.

The first rule, ‘all’, is the default rule used by the make command if none is specified in command

line.

Table 4-1. Make Goal List

Make Goal Description

[all] Default goal: build the project

clean Clean up the project

rebuild Rebuild the project

ccversion Display CC version information

cppfiles file.i Generate preprocessed files from C source files.

asfiles file.x Generate preprocessed assembler files from C and assembler source files.

objfiles file.o Generate object files from C and assembler source files.

a file.a Archive: create A output file from object files

elf file.elf Link: create ELF output file from object files

lss file.lss Create extended listing from target output file

sym file.sym Create symbol table from target output file

sizes Display target size information

isp Use ISP instead of JTAGICE mkII when programming.

cpuinfo Get CPU information.

halt Stop CPU execution.

chiperase Perform a JTAG Chip Erase command

erase Perform a flash chip erase.

program Program MCU memory from ELF output file

secureflash Protect chip by setting security bit

reset Reset MCU.

debug Open a debug connection with the MCU

run Start CPU execution

readregs Read CPU registers

doc Build the documentation

cleandoc Clean up the documentation

rebuilddoc Rebuild the documentation

verbose Display main executed commands
10

32078B–AVR32–05/08

AVR32119

http://gcc.gnu.org

To build the project, type:

make all

It compiles source files and links object files together to generate one binary file (program run-

ning in Flash). It describes how to compile source files and link object files together. This

generates an elf format file, which is converted to a binary file without any debug information by

using the objcopy program.

4.2 Loading the Code

Once the build step is completed, one .elf file is available and ready to be loaded into the board.

The AVR32 UC3 ISP solution offers an easy way to download files into AVR32 products on

Atmel Evaluation Kits through a USB or the JTAG link. Target programming is done here via the

JTAGICE mkII debugger tools.

Follow the steps below to load and run the code:

• Shut down the board

• Plug the USB cable between the PC and the EVK1100

• Plug the JTAGICE mkII between the PC and the EVK1100

• Power on the board

• To load with the standalone Makefile, open a shell and type:

make program run

• To load from AVR32Studio, refer to application note AVR32015.

Note: The UC3A0512 is pre programmed with a USB bootloader protected with the BOOTPROT fuse.
The only to program again the flash through JTAG is to send a chiperase command. To do this,
type in a shell: “avr32program chiperase”.

The code then starts running, LED5 blinks in red every 1sec and the LED6 green is controlled by

the push button 0.

4.3 Debug Support

When debugging the Getting Started example with GDB, it is best to disable compiler optimiza-

tions. Otherwise, the source code will not correctly match the actual execution of the program.

To do that, simply comment out (with a ‘#’) the “OPTIM = ” line of the makefile and rebuild the

project.

For more information on debugging with GDB, please refer to the “GNU-Based Software Devel-

opment” application note and to the GDB manual available on gcc.gnu.org.
11

32078B–AVR32–05/08

AVR32119

http://gcc.gnu.org

5. Revision History

Table 5-1.

Document Ref. Comments Change Request Ref.

32078A First issue.

32078B Fixed GPIO LED Control.
12

32078B–AVR32–05/08

AVR32119

Headquarters International

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud

BP 309

78054 Saint-Quentin-en-

Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr32@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® AVR Studio
®

 and others are registered trademarks

or trademarks of Atmel Corporation or its subsidiaries. Windows
® and others are trademarks or registered trademarks of Microsoft Corporation US

and/or other subsidiaries. Other terms and product names may be trademarks of others.
32078B–AVR32–05/08

	1. Introduction
	2. Requirements
	3. Getting Started with a Software Example
	3.1 Specification
	3.2 Implementation

	4. Loading the Project
	4.1 Building the Project
	4.2 Loading the Code
	4.3 Debug Support

	5. Revision History

